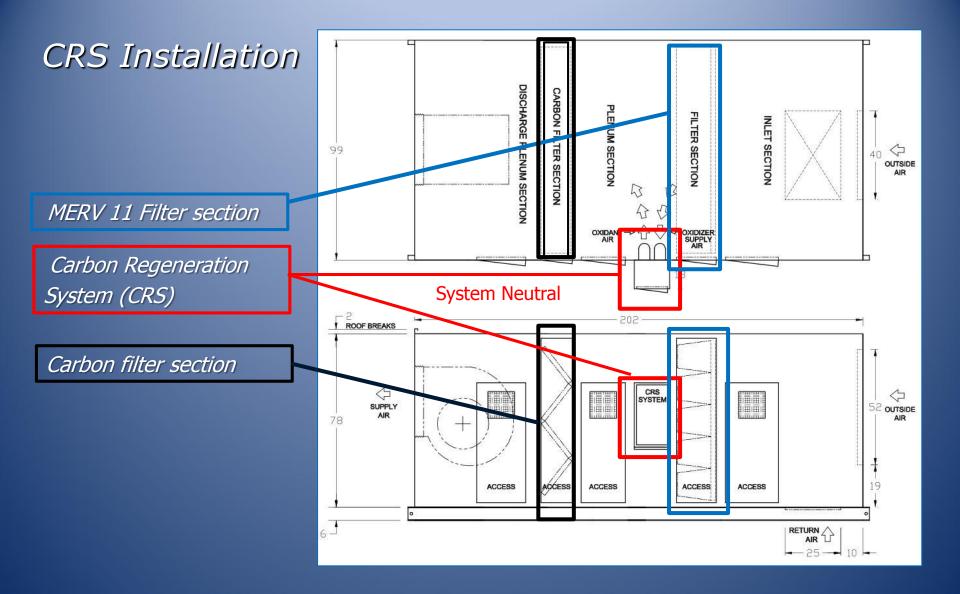
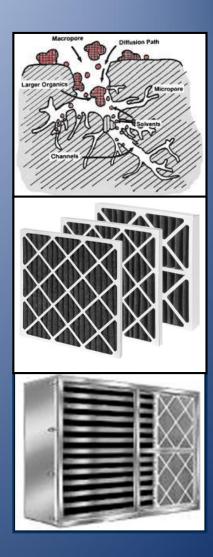
Odor Control Oxidation and Activated Carbon

Daniel Glendon Product Manager, TriMed



Contaminant Calculator

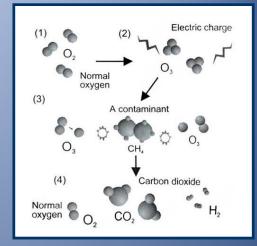
The University of Kansas Mechanical Engineering Department has developed a calculator using ASHRAE 62.1 standards and guidelines


Designer Name Job Name			MEP Firm	Date 11/25/2015
*Inputs Required in White Boxes ASHRAE STA	NDARD 2013		Units Engli	
Location and Zone		Airflow		Occupancy and Filtration
Country Canada	F	Facility Type Classrooms (A	Age 5-8)	
Province Ontario		Rp CFM/Person	10	# of Occupants (P ₂) 200
N/A N/A		Ra CFM/ft ²	0.12	Filter Location B: Mixed Air Filter
Area of Zone (Az) ft ² 1,000	Uncorrected Supp		13,250	Filter Type No Filter
Zone Volume (Vol) ft ³ 10,000		Air Distribution (Ez)	1	Input Contaminant Data
Reduction Factors	Outdoor 4	Airflow Behavior Cons	tant	
Building Emission (0-1) 100%			Constant	Clear Data
Building Emission (0-1) 100% Outside Air (0-1) 50% Human Emission (0-1) 75%	F	Tow Reduction Factor (Fr)	1	Help
	r	low Reduction Factor (FF)		
]			
VRP				Reduced OA
Outside Air (Voz) 2,120.0	CFM			Outside Air (Voz_r) 1,611.2 CFM
OA % of Supply (Voz/(Voz + Fr(Vpz-Voz))	%	% of VRP V _{oz}	OA % of Supply (Voz_r/(Vo	z_r + (Vpz_r-Voz_r)) 12 %
Recirculated Air (Fr (Vpz - Voz)) 11,130.	0 CFM	76 %	Recirculat	ed Air (Vpz_r-Voz_r) 11,638.8 CFM
Outside Air Per Person (Voz/Pz) 10.60	CFMPerson		Outside Air P	er Person (Voz_r/Pz) 8.06 CFM/Person
Ventilation Rate Per Area (Voz/Az) 1.0	CFM/ft ²		Ventilation Rate	Per Area (Voz_r/Az) 1.0 CFM/ft²
Recirculated Air Per Person (Fr(Vpz-Voz)/Pz) 55.7	CFM/Person		Recirculated Air Per Perso	n ((Vpz_r-Voz_r)/Pz) 58.2 CFM/Person
VAV Minimum Supply Air (Vpz_r) 13,250.	0 CFM		Revised Flow Re	eduction Factor (Fr_r) 1.00
Air Change Per Hour 79.50	ACh/hr			Air Change Per Hour 79.50 ACh/hr

Contaminant	Building Emission	Outdoor Air Concentration	Human Emission	OSHA PEL	NIOSH REL	ACGIH TLV	Heal th Canada	Conc. Using VRP	Conc. Using Reduced OA
	ppm	ppm	ppm	ppm Off	ppm Off	ppm Off	ppm On	ppm	ppm
1,1,1 - Trichloroethane	0	0	6.7008E-05	100		50		0.0004188	0.0005511
1,1,2,2 Tetrachloroethane	0	0.00016	1.77517E-06	5	1	1		0.0001711	0.0001746
1,2 Dichloroethlene	0.0000206	0	0	50	1	10		0.0000206	2.711E-05
1,3,5 Trimethylbenzene	0	0.000083	0	25	25	25		0.000083	0.000083
1,4 Dichlorobenzene	0.076	0	0	75	150	10		0.076	0.1
2-Propanol			0	N/E	100	100		0	0
4-ethyltoluene		0.00011	0					0.00011	0.00011
2-Butanone (MEK)	0	0.00048	0.028629217	200	200	200		0.1794126	0.2359176
Acetaldehyde	0.044	0.0019	0.000169105	200	200	200		0.0469569	0.0611854
Acrolein			0	0.1	0.1			0	0
Acrylonitrile			0	40	40	20	20	0	0
Acetone (propane)	0	0.0036	0.001740605	1000	1000	500	500	0.0144788	0.0179142
Ammonia	0	0	0.194947504	50	25	25	50	1.2184219	1.6031867
Benzene	0.0056	0.00094	4.3596E-05	1	0.1	0.5	0.5	0.0068125	0.0086669
Carbon Dioxide	0	500	154.7504212	5000	5000	5000	3500	1467.1901	1772.6186
Carbon Disulfide	0.114	0	0	20	1	10		0.114	0.15
Carbon Monoxide	0	2	0.075983645	50	35	25	11	2.4748978	2.6248655
Carbon Tetrachloride	0.0036	0	0	10	2	5	5	0.0036	0.0047368
Chloroform	0.035	0	5.34839E-06	50	50	10	10	0.0350334	0.0460966
Chorobenzene	0.113	0	0	75	75			0.113	0.1486842
Dichloromethane	0	0.0014	0	25		50	50	0.0014	0.0014
Dioxane	0.23	0	9.66202E-07	100	100			0.230006	0.3026395
Ethanol	0	0.017	0	1000	1000	1000	1000	0.017	0.017
Ethyl acetate	0	0	0	400	400			0	0
Ethyl benzene	0.26	0.00021	0	100	100			0.26021	0.3423153
Formaldehyde	0	0.0032	0	0.5	0.5	0.3	0.3	0.0032	0.0032
Hexane	0.57	0.00048	0	500	500	50	50	0.57048	0.75048
Hexanol	0	0.00016	0	50	50	50		0.00016	0.00016
Hydrogen sulfide	0	0	9.36753E-05	20	10	1		0.0005855	0.0007704
Methane	0	0	0.022689503			1000		0.1418094	0.1865913
Methanol	0	0	3.98558E-05	200	200	200		0.0002491	0.0003278
Methylene Chloride	0.065	0	0.000220523	25		50		0.0663783	0.0873398
Naphthalene	0.000936	0	0	10	10			0.000936	0.0012316
Nitrogen dioxide	0	0.015	0	5	1	3	0.05	0.015	0.015
Nonane	0	0.00011	0		200	200		0.00011	0.00011
Octane	0	0.000094	0	500	75	300	300	0.000094	0.000094

Activated Carbon

- Adsorption properties collect molecular size contaminant
- holding capacity and removal efficiency
- > Activated carbon vs. impregnated carbon
- Common types and configuration of activated carbon



The Oxidation Process

- Energized air molecules are highly reactive.
- Reactive Oxygen Species (ROS) or oxidants are commonly known as:

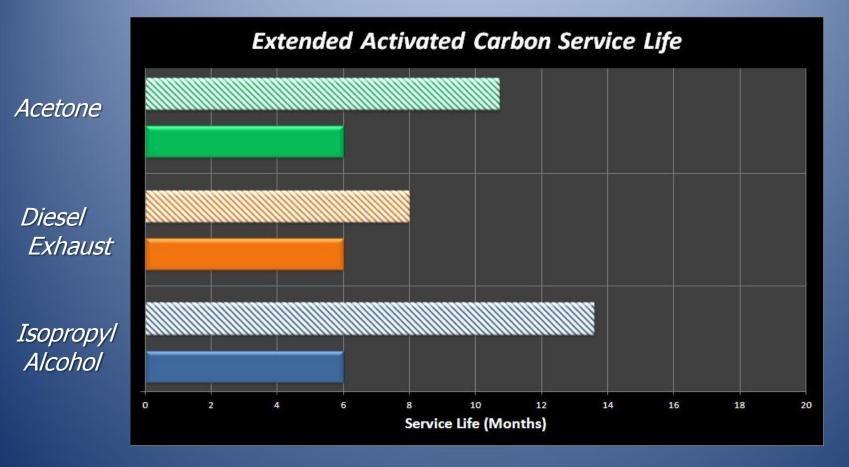
Mono oxygenO+ O-OzoneO3Hydroxyl radicals•OH


- ROS quickly react with odorous compounds by breaking apart their molecular bonds
- ROS / oxidants are created using corona discharge from our oxidizer generator head

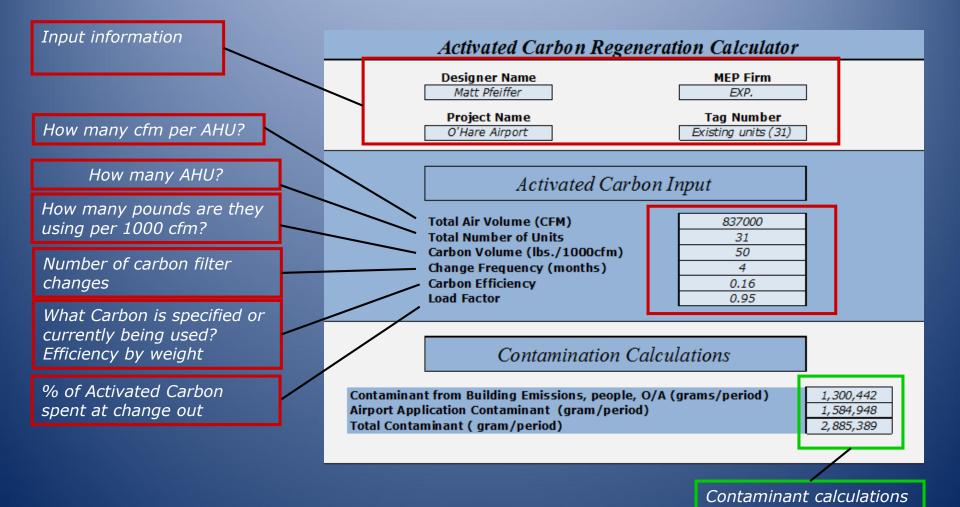
Combining Technologies: Oxidation and Activated Carbon

- > Oxidation: clean, efficient, low energy consumption, effective on a wide range of contaminants and very low maintenance. BUT oxidation reacts slowly to surges in contaminant levels and some engineers are reluctant to use oxidation.
- Activated Carbon: deals with variable levels of contaminants and flexible in terms of knowing the exact amount of contaminant. BUT it is messy, expensive to install and maintain, hard to dispose of and may require up to 1.5 " w.g.




Combining Technologies

- > Extend the Activated Carbon change frequency
- Reduce the amount of AC required
- Reducing static pressure and energy consumption
- Remove broader range of Contaminant Doesn't require Doesn't require additional space.



Note: test results from 3rd party laboratory. striped bars with oxidant, solid bars without oxidant

The Carbon Calculator

"A tool to accurately calculate the life cycle and cost benefits associated to using activated carbon with oxidation when removing Gas-phase contaminant"

Design calculations

Sources of Contamination

Contaminant
volumes calculated
from each source

Carbon life calculations

Contaminant Concentrations Table							
	Building Emissions/People/Outside Air			Airport Application Contribution			
	_						
Contaminant	ppm	a∕hr.	g/period	ppm	a∕hr.	g/period	Total Contaminant
1.1.1 - Trichloroethane	0.0003	0.26	755.29	0	0.00	0.0	
1.1.2.2 Tetrachloroethane	0.0002	0.16	474.76	0	0.00	0.0	
1,2 Dichloroethlene	0.0000	0.01	34.13	0	0.00	0.0	0 34.13
1,3 Butadiene	0.0000	0.00	0.00	0.014703025	46.23	133,135.6	1 133,135.61
1,3,5 Trimethylbenzene	0.0001	0.06	167.00	0	0.00	0.0	0 167.00
1,4 Dichlorobenzene	0.0760	64.94	187,025.77	0	0.00	0.0	0 187,025.77
2-Butanone (MEK)	0.1450	60.77	175,014.73	0	0.00	0.0	0 175,014.73
Acetaldehyde	0.0468	11.97	34,477.10	0.00601806	15.41	44,378.5	4 78,855.64
Acrolein	0.0000	0.00	0.00	0.002702161	8.81	25,359.1	6 25,359.16
cetone (propane)	0.0124	4.18	12,042.19	0	0.00	0.0	0 12,042.19
Ammonia	0.9840	97.41	280,535.11	0	0.00	0.0	0 280,535.11
Benzene	0.0068	3.07	8,839.48	0.013575499	61.64	177,514.1	4 186,353.62
Carbon Disulfide	0.1140	50.45	145,307.58	0	0.00	0.0	0 145,307.58
Carbon Tetrachloride	0.0036	3.22	9,270.13	0	0.00	0.0	9,270.13
Chloroform	0.0350	24.31	70,001.12	0	0.00	0.0	0 70,001.12
Chorobenzene	0.1130	73.93	212,928.14	0	0.00	0.0	0 212,928.14
Dichloromethane	0.0014	0.69	1,990.49	0	0.00	0.0	-/
Dioxage	0.2300	117.80	339,260.09	0	0.00	0.0	0 339,260.09
Ethanol	0.0170	4.55	13,111.06	0	0.00	0.0	
Ethyl benzene	0.2602	160.58	462,483.60	0	0.00	0.0	0 462,483.60
Formaldehyde	0.0032	0.56	1,608.76	0.212172784	370.37	1,066,669.8.	· · ·
Hexane	0.5705	285.78	823,033.38	0	0.00	0.0	
Hydrogen sulfide	0.0005	0.09	269.75	0	0.00	0.0	
Methane	0.1145	10.68	30,750.96	0	0.00	0.0	
Methanol	0.0002	0.04	107.90	0	0.00	0.0	
Methylene Chloride	0.0661	32.64	93,998.05	0	0.00	0.0	
Naphthalene	0.0009	0.70	2,008.32	0	0.00	0.0	-/
Nitrogen dioxide	0.0150	4.01	11,551.00	0	0.00	0.0	/
Nonane	0.0001	0.08	236.08	0	0.00	0.0	
Octane	0.0001	0.06	179.75	0	0.00	0.0	
Phenol	0.0304	16.64	47,925.37	8	0.00	0.0	
Propane	0.0000	0.01	23.38	0	0.00	0.0	
Styrene	0.1201	72.70	209,384.19	0.001545376	9.36	26,944.1.	
Tetrachloroethylene	0.0030	2.90	8,346.25	0	0.00	0.0	
Toluene	0.0467	24 99	71,984.55	0.004315643	23.11	66,567.8	
Trichloroethylene	0.0640	48.88	140,781.59	0	0.00	2.0	
Vinyl Chloride Monomer	0.0000	0.00	7.19	0	0.00	0.0	-
Xylene	0.0003	0.17		<u>0.002497132</u>	15.41	44,378.5	· · · · · · · · · · · · · · · · · · ·
Total	2.9673	1.128.86	1,300,442	0.26	<u>550.33</u>	1,584,948	3 2,885,389
Current Replacement	4.0	monihs	P	Proposed Rep	placement	7.1	1 months

Cost Calculations

Cost Calculations							
Current Activated C	Carbon Replacement	837,000 cfm (31 units)	Cost per Change	Annual Cost			
	/ lbs sed on 50lbs/1000cfn m site 42,000 pounds		\$167,400.00 \$27,900.00 \$12,555.00 \$5,022.00 \$212,877.00	\$502,200.00 \$83,700.00 \$37,665.00 \$15,066.00 \$638,631.00			
Proposed Oxid	dation System		(Cost/Change x 1.7)	New Annual Cost			
Oxidation equipmen	t \$267,950.00		Activated Carbon	\$284,580.00			
Monitoring equipme			Labor	\$47,430.00			
Installation	\$93,000.00		Freight	\$21,343.00			
			Power Consumption	\$18,144.00			
			Disposal	\$8,537.00			
Total Cost	\$480,300.00			\$380,034.00			
	Annual Savin	gs \$258,597 F	Payback 1.85 year.	S			

CRS Applications

> Airports > Data centers Micro electronic manufacturing care > Veterinarian facilities Live stock barns > Restaurants

> Hospitals > Laboratories > Long term health > Food processing > Casinos > RMGO's> Museums

Summary

ROS Oxidizes contaminant in activated carbon media.

Potentially reduce the amount of activated carbon required thus reduces energy cost by lowering static pressure.

ROS/Oxidant (ozone) is eliminated by the activated Carbon media

Supporting Technical Papers

Alvarez, P.M., Beltran F.J., Gomez-Serrano, V., Jaramillo, J., Rodriguez, E.M. "Comparison between thermal and ozone renenerations of spent activated carbon exhausted with phenol." *Water Research*. Volume 38, Issue 8, April 2004, Pages 2155-2165. http://www.sciencedirect.com/science/article/pii/S00431354040.

Alvarez, P.M., Beltran, F.J., Masa, F.J., Pocostales, J.P. "A comparison between catalytic ozonation carbon adsorption/ozone-regeneration processes for wastewater treatment." *Applied Catalysis B: Environmental*. Volume 92, Issues 3-4, 9 November 2009, Pages 393-400. <u>http://www.sciencedirect.com/science/article/pii/S09263373090</u>.

Bourbigot, M.M., Hascoet, M.C., Levi, Y., Erb, F., Pommery, N. "Role of ozone and granular activated carbon in the removal of mutagenic compounds." *Environ Health Perspect*. Nov 1986; 69: 159-163. <u>http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1474321/</u>.

Cannon, Fred S., Dusenbury, James S., Paulsen, Paul D., Singh, Jyoti, Mazyck, David W., Maurer, David J. "Advanced oxidant regeneration of granular activated carbon for controlling air-phase VOCs." *Ozone: Science & Engineering: The Journal of the International Ozone Association.* Volume 18, Issue 5, 1996. <u>http://www.tandfonline.com/doi/abs/10.1080/01919512.1996.1</u>.

Chiang, Hung-Lung, Chiang, P.C., Huang, C.P. "Ozonation of activated carbon and its effects on the adsorption of VOCs exemplified by methylethylketone and benzene." *Chemosphere* 47 (2002) 267-275.

Dusenbury, James S., Cannon, Fred S. "Granular Activated Carbon Regeneration With advanced oxidation To Control VOCs."

Lin, Shen H., Lai, Cheng L. "Kinetic characteristics of textile wastewater ozonation in fluidized and fixed activated carbon beds." *Water Research*. Volume 34, Issue 3, 15 February 2000, pages 763-772. <u>http://www.sciencedirect.com/science/article/pii/S00431354990</u>.

Valdez, H., Sanchez-Polo, M., Rivera-Utrilla, J., Zaror, C.A. "Effect of ozone treatment on Surface Properties of Activated Carbon." *Langmuir.* 2002, 18, 2111-2116.