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ASHRAE is a Registered Provider with The American Institute of Architects
Continuing Education Systems. Credit earned on completion of this
program will be reported to CES Records for AIA members. Certificates of
Completion for non-AlA members are available on request. This course is
approved for 2 LU/HSW by AIA; course number is CRAWLEY05.

This program is registered with the AIA/CES for continuing professional
education. As such, it does not include content that may be deemed or
construed to be an approval or endorsement by the AIA of any material of
construction or any method or manner of handling, using, distributing, or
dealing in any material or product. Questions related to specific materials,
methods, and services will be addressed at the conclusion of this
presentation.
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Learning Objectives

Explain difference between weather and climate
Recognize climate change scenarios
Explain impacts of urban heat islands on diurnal temperature

Explain impact of climate change on energy performance in
different climate zones
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Course Description

With the increasing interest in climate change driven by human activity, recent
research has focused on the impact of climate change or urban heat island on
building operation and performance across the world. But this work usually
aggregates the energy and peak demand impacts across a broad sector. In a
recent study, impacts on the operating performance of an office building were
estimated based on climate change and heat island scenarios in 25 locations (20
climate regions). This presentation presents the variation and differences
among the 20 regions when climate change is introduced. The focus is on
changes in comfort conditions, building equipment operation as well as daily
patterns of energy performance using prototypical buildings that represent
typical, good, and low-energy practices around the world. Other issues such as
fuel swapping as heating and cooling ratios change, impacts on environmental
emissions, and how low-energy building design incorporating renewables can
significantly mitigate any potential climate variation are also presented.

Energy End Uses by Sector
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U.S. Builldings’ Enerc

Neather = Climate

Weather:

the state of the atmosphere with respect to wind,
temperature, cloudiness, moisture, pressure, etc.

Climate:

the composite or generally prevailing weather
conditions of a region, as temperature, air pressure,
humidity, precipitation, sunshine, cloudiness, and
winds, throughout the year, averaged over a series of
years.

www.dictionary.com
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Wilding Uses for Climatic Data

Building design and performance modeling require weather data to
represent climatic conditions of the building location, including:

Peak heating and cooling design conditions for load calculations
(temperature, humidity, solar, and wind conditions for design

calculations)

Building Performance Simulation

= Typical hourly weather data

= Actual hourly weather data for calibration to utility bills
= Future hourly weather data

Requirement:

ation Applications and Climatic Data

J

Simulation Application

Type of weather data required

Energy design and compliance analysis of
fully-conditioned buildings

Typical (full year) hourly data

Performance of un- or semi- conditioned
buildings

Typical data not adequate -require application specific data (e.g., warm
summer, multi-year data)

Equipment sizing

Design-day or short period calculations using near-extreme conditions

Model calibration, building trouble
shooting, control optimization, and actual
savings estimation

Weather data observed during the study period at or near the building site

Engineering studies (e.g., hours when
economizer is feasible)

Simple weather information (e.g., bin temperature data)

Natural ventilation design

Local wind conditions highly variable - airport data often unreliable for
other sites. Locally measured wind data.

Daylighting studies

Hourly illuminance data usually sufficient for sensor-control lighting
systems but sub-hourly data often required for visual comfort or control
dynamics.

Renewable energy systems

Solar-electric systems require short-term data and spectral variation of
incident solar radiation. Wind turbine systems require sub-hourly wind

velocity data. (Standard hourly data may produce unreliable results for
systems with non-linear characteristics.)

27 February 2017
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Meather Data Elements for Building

i P | p
Simuilation

Element odel use(s) Availability and issues
. Exterior surface convection

. Infiltration/ventilation sensible
Dry-bulb air temperature heat transfer
- Equipment (e.g. air-cooled

condenser)

p i Infiltration/ventilation latent heat
Efxézﬁgﬁnlglzﬁgg:ltb transfer Commonly observed

temperature) Equipment (e.g. cooling tower)
Fenestration heat gain Sparsely measured
Exterior surface heat balance If observed, often global only
Solar thermal and photovoltaic Model sources widely used
systems Remote sensing opportunities
Solar illuminance (direct and diffuse) Daylight modeling Rarely measured (modeled from irradiance)

Rarely measured (modeled from
temperature, humidity, and cloud cover) |
Generally observed

Multiple data representation conventions
Evolution of automated Instrumentation
Introduces uncertainties

Generally observed

Local effects very significant for both
velocity and direction

Low velocity observations unreliable
Measured for agricultural purposes, limited
Ground temperature Below-grade heat transfer exploitation of observed values for building
simulation

Ground surface albedo Reflected irradiance / illuminance Inferable from presence of snow

Generally measured; inconsistent reporting
formats

. Universally observed
. Significant local effects (e.g. heat island)

Solar irradiance (direct and diffuse)

Sky temperature Exterior surface heat balance

Cloud cover / sky condition Sky models (e.g. for daylighting)

Exterior surface convection
Wind (velocity and direction) Infiltration
Natural ventilation

Weather conditions (e.g. rain) Exterior surface wetting

Climatic Data Avai r1|';i|iil/

In the past, usually only available from ground observing stations
= Rarely includes solar data
= Temperature/humidity data generally robust.

= Wind data is problematic - extremely variable due to terrain and site
obstructions.

Other data can be limited or incomplete.

Now, more sources incorporate remote sensing (satellite) data.
Accuracy is quite good. Advantage - comprehensive global data,
relatively decent grid. Not dependant on ground stations.

In general master data sets such as those from NOAA /NCEI are
near-real-time. Data is posted within a few days to weeks.

But design conditions and data for simulation often require
summary and further calculations before it can be use
= Design conditions based on historical period of record

= Ground observing stations (near real-time data) do not record solar
radiation.
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Design Conditions

Used for design sizing of heating, ventilating, air-conditioning,
and dehumidification equipment, as well as or other energy-
related processes in residential, agricultural, commercial, and
industrial applications.

Includes as a minimum dry-bulb, wet-bulb, and dew-point
temperature, and wind speed with direction at various
frequencies of occurrence.

Typical annual percentiles* used:
99.6% heating dry-bulb temperature and
1% cooling dry-bulb temperature with coincident wet-bulb.

Depending on the application, use other percentiles (99, 0.4, 2, 5)
or variables (wind speed, dewpoint, wetbulb, etc.). Monthly
cooling percentiles also available (0.4, 2, 5, 10).

*Percentiles represent number of hours that the design condition can be expected to be exceeded in a typical year, based
on15-30 years of data. 99.6% ~ 35 annual hours (8760 - (99.6% * 8760)). 1% ~ 88 annual hours (8760 - (1% * 8760)).

Design Conditions (cont’'d)

[=1 Best source for design conditions:
Chapter 14 Climatic Design Information,
ASHRAE Handbook-Fundamentals:
® 6,443 locations through the world
® Integrated Surface Dataset (ISD) data for stations

from around the world provided by NCDC for
the period 1982 to 2010
Updated every four years

Climate changing! .
Comparing design conditions for 1274 locations
between 1977-1986 and 1997-2006:

= 99.6% annual dry-bulb temperature increased 1.52°C
0.4% annual dry-bulb increased 0.79°C
annual dew point increased by 0.55°C
HDD base 18.3°C) decreased 237°C-days,
CDD base 10°C increased 136°C-days.
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@limatic Data in Building Performance
[4 p
Simulation

@ Climatic data needed for simulating representative
performance from a single year analysis.

TMY (Typical Meteorological Year) approach is most widely
used- a composite of months (not all from same year), each
representative for the period of record.

Months selected using statistical
indices (daily min, mean, max)
dry-bulb temperature, dew-point
temperature, wind speed, and
total global and direct solar
radiation. Each method varies
weightings of the indices based
their importance.

‘ l/l')l’vl| Metc ’1|"1|’1’J.l’rl| Year ||’)||I'|// Data

= Best for:
= Comparison of alternatives during design

= Compliance with building standards/codes and green building rating
system points

@ Limitations:
= No explicit effort to represent extreme conditions
= Files not intended to represent design conditions (can be mild)

17
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Weather Data Sets

Acronym

Name

Number of
Locations

Geographic Coverage

c1z22

California Climate Zones 2

16

California

CWEC

Canadian Weather for Energy Calculations

80

Canada

Chartered Institute of Building Services Engineers
Test Reference Years and Design Summer Years

14

United Kingdom

Chinese Standard Weather Data

270

China

Chinese Typical Year Weather

57

China

Italian Climate data collection 'Gianni de Giorgio’

66

Italy

logii | G ki Wodnej Weather
Data Set

(]

Poland

Israel Meteorological Service Weather Data for Israel

4

Israel

Indian Society of Heating, Refrigerating and Air-
Conditioning Engineers

58

India

Iranian Typical Meteorological Year

6

Iran

International Weather for Energy Calculations v2

Worldwide (except USA and Canada)

National Institute of Water & Atmospheric Research

New Zealand

Representative Meteorological Year

Australia

Spanish Weather for Energy Calculations

Spain

Solar and Wind Energy Resource Assessment

Bellze, Brazll, China, Cuba, El Salvador, Ethiopla, Ghana,
[« ; Kenya, Nicaragua, and Sri
Lanka

Typical Meteorological Year 3

USA, Guam, Puerto Rico, US Virgin Islands

@ Actual hourly weather data required to calibrate to utility bills in

/fi||,1|

N e ,1i|’|f r Data
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existing buildings and subsequent evaluation of retrofit alternatives.

Many sources - some providing near-real time data and/or
prediction:

= NOAA/NCEI/WMO Data Center
= EnergyPlus Real-Time Weather Data
= Weather Bank
= Weather Source

Biggest issue - how complete are the data - does it include
temperature, humidity, wind, solar radiation?
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Typical vs. Actual

Heating:Cas USA_VA_Sterling-Washington.Dulles
Cooling:Electricity
Fans:Electricity
® |nterior Lights:Electricity
Plug Loads:Electricity
DHW:Gas
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Min 2001
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Warm

Future Climatic Data Sets

= CIBSE
UK only, 14 locations

Derived from reanalysis (downscale of lat/long grid)
from IPCC (UKCP09)

2020, 2050, 2080
Low, medium, high cases
See CIBSE TM48

B CCWorldWeatherGen

= Utility converts an EPW into a IPCC A1FI scenario
morphed file.
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IRCC Climate Change Scenarios

@ Four major storylines developed to represent different
demographic, social, economic, technological, and
environmental developments.

= Four emissions scenarios from the storylines - A1FI, A2, B1, B2 -
represent the range of potential climate impact

E Four major Global Climate Models (GCMs): HadCM3, CSIRO2,
CGCM2, PCM)

Result: 16 scenario and climate prediction combinations

Range of Annual Average Tempe

( I’|:J|’|r’]~’- |‘|’(n(|jr Ir|(|

CGCM2 A1FI

CGCM2 A2

CGCM2 B1
——CGeM2 B2

HadCM3 B1
—— HadCM3 B2
PCM A1FI
PCM A2
PCMB1
PCM B2

Predicted Temperature Change, C
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(€reating Future Climatic Data

= Methods

» Dynamic downscaling
= Physics-based model used to downscale global climate model results

= Analogue scenarios

= Find existing locations with comparable data to the predicted climate change scenario
results

= Time series adjustment (morphing)
o Shift and stretch the existing data to match the predicted monthly change

= Statistical models

a Stochastic model trained on observed data adjusts data based on altered frequency
distributions of weather variables

MY 2 Data Morphed with Climate

b . C ; R
Change Scenarios

Los Angeles CA USA TMY2 Autumn Novermber 23 Climate Change

25 B
Scenario Diurn|
Night-time Temperatures  Temperature (

20 Remalf Higher
Scenario Delta

Temperature (+)

Temperature, C
=

=

=== Existing Dry Bulb Temperature
A1F1 Dry Bulb Temperature
A2 Dry Bulb Temperature
B1 Dry Bulb Temperature
B2 Dry Bulb Temperature

= = =
[T

10:00 AM
11:00 AM
11:00 PM
12:00 AM

Hour of Day
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Island

Sterling VA (Washington Dulles Airport) TMY2 Spring April 10 Heat Island

Temperatures Remain
Higher after Sunset

Temperatures Remain Lower Daytime
Higher until Sunrise Temperatures

Temperature, C

=== Existing Dry Bulb Temperature
Low HI Dry Bulb Temperature
High HI Dry Bulb Temperature

10:00 AM
10:00 PM
11:00 PM
12:00 AM

Hour of Day

22
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Jypical vs. Sorted Actual Years

RO USA_VA_Sterling-Washington.Dulles
Cooling:Electricity
Fans:Electricity
B |nterior Lights:Electricity
Plug Loads:Electricity
DHW:Gas
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S a 9o O
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Min 2001
Cool 1990
Max 1984

Warm 1969

A Snapshot of Results:
Site Energy Decreases

USA_VA_Sterling-Washington.Dulles Standard and Climate Change, Site Energy

Heating:Gas
Reheat:Gas
Cooling:Electricity
Fans:Electricity

= Lights:Electricity
Plug Loads:Electricity
SHW:Gas
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BUt Source Energy Increases Due to
@liimate Changes = Increased Emissions

USA_VA_Sterling-Washington.Dulles Standard and Climate Change, Source Energy EZﬁgggg::

Cooling:Electricity
Fans:Electricity

= Lights:Electricity
Plug Loads:Electricity
SHW:Gas
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ow-Energy Buildings Can Mitigate
Impacts of Climate Variation

USA_VA_Sterling-Washington.Dulles Low Energy and Climate Change, Source Energy
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Plug Loads:Electricity
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source Energy Impacts Even Higher in
Hotter Climates
SGP_Singapore Standard and Climate Change, Source Energy

BHeating:Gas
DOReheat:Gas
®Cooling:Electricity
@Fans:Electricity
OLights:Electricity
BPlug Loads:Electricity
@SHW:Gas

End-Use Energy Consumption (Megajoules/m?)

leyonto: Site Energy Sligh
r

CAN_ON_Toronto Standard and Climate Change, Site Energy

BHeating:Gas
DReheat:Gas
mCooling:Electricity
mFans:Electricity
OlLights:Electricity
OPlug Loads:Electricity
mSHW:Gas

End-Use Energy Consumption (Megajoules/m?)
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Source Energy Impacts Mild in Climates

( = p -
Such as Toronto
CAN_ON_Toronto Standard and Climate Change, Source Energy

B Heating:Gas
DReheat:Gas

m Cooling:Electricity

@ Fans:Electricity
OLights:Electricity
BPlug Loads:Electricity
BSHW:Gas
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Low-Energy Buildings Mitigate
limpacts in Canadian Locations

CAN_ON_Toronto Low Energy and Climate Change, Source Energy

BHeating:Gas
DReheat:Gas
mCooling:Electricity
wFans:Electricity
OlLights:Electricity
OPlug Loads:Electricity
mSHW:Gas

End-Use Energy Consumption (Megajoules/m?)
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Heat Island Impacts Si

CAN_ON_Toronto Standard and Heat Island, Source Energy

BHeating:Gas
BReheat:Gas
mCooling:Electricity
WFans:Electricity
DOLights:Electricity
BPlug Loads:Electricity
mSHW:Gas

End-Use Energy Consumption (Megajoules/m?)

HtisLo

Low-Energy Buildings /
Mitigate Heat Island Impacts

CAN_ON_Toronto Low Energy and Heat Island, Source Energy

BHeating:Gas
OReheat:Gas
®Cooling:Electricity
wFans:Electricity
OlLights:Electicity
BPlug Loads:Electricity
BSHW:Gas

End-Use Energy Consumption (Megajoules/m?)
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End-Use Energy C

End-Use Energy Consumption (Megajoules/m?)

Monthly Predicted Change

CAN_ON_Toronto Typical Year Low Energy and Climate Change Scenarios, Source Energy

BHeating:Gas
BReheat:Gas
mCooling:Electricity
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Predicted Monthly Primary Energy End-Use Consumption, in MJ/m2, in Toronto, ON, CAN for Bascline and Four Climate Change Scenarios

Northern Canada:
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Site Energy Lower
CAN_NU_Resolute Standard and Climate Change, Site Energy
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source Energy in Northern Canada
Even Lower

CAN_NU_Resolute Standard and Climate Change, Source Energy
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BPlug Loads:Electricity
BSHW:Gas

Largest Changes: Monthly End Uses
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Climatic design data is critical for building design (equipment and systems sizing)

For building performance simulation, typical (TMY), actual, and future weather
can all support building evaluation

= Some question of whether single TMY is enough (research on XMYs underway)

= Rich resources of data now available - both ground observing stations and satellite data.

Climate change scenarios can be represented today by modifying existing hourly
weather files
Buildings in higher latitude climates (north and south) will likely see decreases (heating
decreases more than cooling increases)
Buildings in tropical and semi-tropical locations will see increases - but lower than changes
in higher latitudes - primarily due to increased cooling
Energy-efficient buildings mitigate most impacts of both climate change and heat islands.

Thank you!

Dru Crawley

Dru.Crawley@Bentley.com

' @DruCrawley

in DruCrawley
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esources/URLs

Building Performance Simulation for Design and Operation

ASHRAE Handbook — Fundamentals 2013

NOAA/NCEI Integrated Surface Data

Documentation:

Data:

Typical Meteorological Year Data Sets (Climate.OneBuilding free weather data in EPW, ESP-r and Radiance formats)

Drury B. Crawley. 1998. “Which Weather Data Should You Use for Energy Simulations of Commercial Buildings?” in ASHRAE
Transactions, pp. 498-515, Vol. 104, Pt. 2. Atlanta: ASHRAE.

Crawley, Drury B. 2008. “Estimating the Impacts of Climate Change and Urbanization on Building Performance,” Building
Performance Simulation, pp. 91-115, Vol. 1, No. 2 (June).

Meteonorm
Weather Underground
National Centers for Environmental Information

CIBSE Technical Manual 48 (TM48), Use of climate change scenarios for building simulation: the CIBSE future weather years

Climate Change World Weather Generator (CCWorldWeatherGen)

Dview (tool for displaying and comparing weather data (and CSV data)

[ypical Meteorological Year

//’ Jlll‘lrliljrlill "(‘lf‘/ /’l|f1|')|{‘

Weather Data Sets Number of
Locations

Geographic Coverage
Name

California Climate Zones 2 16 California

Canadian Weather for Energy Calculations 80 Canada

Chartered Institute of Building Services Engineers

Test Reference Years and Design Summer Years 14 United Kingdom

Chinese Standard Weather Data 270 China

Chinese Typical Year Weather 57 China

Italian Climate data collection ‘Gianni de Giorgio’ 66 Italy

jii | G k! Wodnej Weather
Data Set 61 Poland

Israel Meteorological Service Weather Data for Israel 4 Israel

Indian Society of Heating, Refrigerating and Air-

Conditioning Engineers 58 India

Iranian Typical Meteorological Year [} Iran

International Weather for Energy Calculations v2 Worldwide (except USA and Canada)

National Institute of Water & Atmospheric Research New Zealand

Representative Meteorological Year Australia

Spanish Weather for Energy Calculations Spain

Belize, Brazil, China, Cuba, El Salvador, Ethiopia, Ghana,
Gi ; Kenya, Maldi Nicaragua, and Sri

Solar and Wind Energy Resource Assessment
Lanka

Typical Meteorological Year 3 USA, Guam, Puerto Rico, US Virgin Islands
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Other Notable Sources for Typical

Mete ’:I";|’J’Ji al Year Data

Meteonorm

Allows users to create a TMY-type file for any location in the world.
Interpolates from observing stations and statistics.

Does include TRY (European TMY-type files) for a number of locations
Useful where no other data exists

Other sources!

IWEC2 with 3012 locations worldwide (outside US/Canada) available from ASHRAE since early 2012.

EU Energy Performance Directive requiring simulation, new data sets for Estonia, Finland, Ireland, Slovenia
California Climate Zones update...

Australia RMY update...

ISHRAE update...

Others.

BOTTOM LINE: Know what you're using - the provenance, source, representativeness - before
depending on it. Better to test against another file you've used with similar climatic conditions.
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